OBNOVA GRADA ZAGREBA NAKON POTRESA Ciklus predavanja: Znanjem za Zagreb (i Hrvatsku) - Zagrebu od Rijeke

Eksperimentalna analiza dugačkih konstrukcija uslijed višestruke potresne pobude oslonaca

Nina Čeh & Gordan Jelenić Građevinski fakultet u Rijeci

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke

Sadržaj

- Uvod
- Opis problema
- Eksperimentalni postav
- Rezultati
- Zaključak i nastavak istraživanja

Uvod

Utjecaj višestruke pobude na oslonce kod konstrukcija velikih raspona zbog slijedećih efekata:

- promjena seizmičkih valova pri prelasku iz jedne sredine u drugu (tlo ili stijena različitih svojstava),
- kašnjenje dolaska seizmičkih valova zbog velike udaljenosti među osloncima,
- nailazak seizmičkih valova iz različitih smjerova,...

Uvod

Početak: Nenad Bićanić (nabavka opreme)

Istraživanje se provodi u suradnji s ekspertnom grupom znanstvenika s Dalian Univesrity of Technology (Dalian, Kina) u sklopu bilateralnih projekata:

•"Eksperimentalno ispitivanje konstrukcija velikih raspona pod utjecajem višestruke pobude oslonaca" (2018-2020):

• Tim: Gordan Jelenić, Nina Čeh, Luyu Li, Han Qin

•"Eksperimentalno ispitivanje mostovnih konstrukcija (pojednsotavljenih modela mostova) uzimajući u obzir asimetrične efekte pod utjecajem višestruke pobude oslonaca" (2020-2022):

• Tim: Nina Čeh, Gordan Jelenić, Bepo Schira, Laura Žiković, Luyu Li, Han Qin

Dio prikazanih rezultata je napravljen u sklopu studentskih radova:

- Ivan Hlača (diplomski rad, 2016.)
- Simona Dobrilla (diplomski rad, 2017.)
- Nikolina Drpić (završni rad, 2020.)

Uvod

Istraživanje se provodi na **jednostavnim grednim modelima** koji svojim ponašanjem mogu opisati samo jedan dio dinamičkog odaziva stvarne konstrukcije.

Ciljevi istraživanja:

- ✓ Bolje razumjeti dinamiku dugačkih konstrukcija pod utjecajem potresne pobude
- ✓ Educirati studente o važnosti uzimanja u obzir dinamičkih (a ne samo statičkih) efekata prilikom proračuna konstrukcija
- ✓ Proučiti najutjecajnije oblike deformiranja dugačkih konstrukcija koji se javljaju prilikom višestruke pobude oslonaca, a nisu toliko izraženi prilikom jednolike pobude.

Opis problema

Jednadžba kretanja:

 $M\ddot{x} + C\dot{x} + Kx = -M\ddot{x}_{g}$

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke

Opis problema

Oblici i tonovi osciliranja:

Laboratorij za konstrukcije, Građevinski fakultet u Rijeci:

Sveučilište u Rijeci Građevinski fakultet www.gradri.uniri.hr

Ministarstvo znanosti, obrazovanja i sporta

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke Sveučilište u Rijeci Građevinski fakultet www.gradri.uniri.hr

FONDOVI

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke Sveučilište u Rijeci Građevinski fakultet www.gradri.uniri.hr

G

FONDOVI

KONKURENTNA Hrvatska

Laboratorij za konstrukcije, Građevinski fakultet u Rijeci:

Sveučilište u Rijeci Građevinski fakultet www.gradri.uniri.hr

FONDOVI

KONKURENTNA Hrvatska

> Ministarstvo znanosti, obrazovanja i sporta

Greda s 3 mase (m_1 , m_2 i m_3) oslonjena na dva potresna stola (T_A i T_B)

Optički mjerni sustav Aramis 4M

G

Pobuda samo jednog oslonca

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke

Pobuda samo jednog oslonca

- dinamička pobuda jednog (desnog) oslonca sustava s tri mase
- kombinacije s različitim omjerima karakteristična tri oblika osciliranja
- frekvencija pobude blizu vlastite frekvencije nekog od tri tona -> uočena je dominacija upravo tog oblika osciliranja

-O-Položaj deformirane grede u vremenu t f ≈ f₁ t = 2,1s 4 (mm) x 2 0 TA M1 M2 M3 ТΒ -2 5 f ≈ f₃ t = 2,38 s (mm) × -5 ΤA M3 M1 M2 ТΒ -10 5 f≈f₂ t = 5 s x (mm) 0 TA M1 M3 TΒ M2

- Početni položaj grede

Položaj nedeformirane grede u vremenu t

Oblici grede uslijed sinusoidalne pobude lijevog oslonca (TA) funkcijom u(t) = $u_0 sin(2\pi ft)$

Sveučilište u Rijeci

Građevinski fakultet

www.gradri.uniri.hr

-5

Jednolika pobuda oba oslonca

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke Sveučilište u Rijeci Građevinski fakultet www.gradri.uniri.hr

G

Jednolika pobuda oba oslonca

- jednolika pobuda oba oslonaca sustava s tri mase
- kombinacije s različitim omjerima tri oblika osciliranja
- frekvencija pobude blizu vlastite frekvencije nekog od tri tona -> taj ton dominira
- jasno je vidljiv svaki od tri oblika osciliranja grede kada je ona pobuđena harmonijskom frekvencijom funkcijom S približnom pojedinoj vlastitoj frekvenciji

x (mm)

Oblici grede uslijed jednolike sinusoidalne pobude oba oslonca funkcijom $u(t) = u_0 sin(2\pi ft)$

Jednolika pobuda oba oslonca

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke

Nejednolika harmonijska pobuda oslonaca

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke

(Ne)jednolika harmonijska pobuda oslonaca

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke Sveučilište u Rijeci Građevinski fakultet www.gradri.uniri.hr

G

(Ne)jednolika pobuda oslonaca – potresni zapis Northridge 1994

Zagrebu od Rijeke

Možemo li u laboratoriju dovoljno točno simulirati potrese koji su se dogodili?

Testovi ponašanja potresnog stola (bez modela na njemu) s zadanom funkcijom pobude white noise...

Karakteristike modela grede (*sinewave* funkcija pobude):

Modes	Frequency fitting	
	Frequency(Hz)	Damping ratio
1 st mode	0.91	0.049
2 nd mode	3.66	0.027
3 rd mode	7.88	0.018

Dinamički odgovor na pobudu *white noise* do 10 Hz (spektralna analiza za m_{1}):

Modes	Frequency fitting	
	Frequency(Hz)	Damping ratio
1 st mode	0.91	0.049
2 nd mode	3.66	0.027
3 rd mode	7.88	0.018

Frekvencija pobude f (Hz)

G

Modes	Frequency fitting	
	Frequency(Hz)	Damping ratio
1 st mode	0.91	0.049
2 nd mode	3.66	0.027
3 rd mode	7.88	0.018

Modes	Frequency fitting	
	Frequency(Hz)	Damping ratio
1 st mode	0.91	0.049
2 nd mode	3.66	0.027
3 rd mode	7.88	0.018

Što dalje?

Shema planiranih eksperimentalnih postava

OBNOVA GRADA ZAGREBA NAKON POTRESA Zagrebu od Rijeke

