

Hrvatska komora inženjera građevinarstva

ISKUSTVA I EKSPERIMENTALNA ISTRAŽIVANJA U VEZI SEIZMIČKE SANACIJE ZIDANIH ZGRADA Prof. dr. sc. Miha Tomaževič Zavod za gradbeništvo Slovenije, Oddelek za konstrukcije Ljubljana, Slovenija

New generation of masonry solutions

Andreas Jäger and Tomislav Franko, Wienerberger

wienerberger

Agenda

- > Market trends
- > Wienberger product- and system development
- > Evaluation of new masonry types towards seismic performance
 - > Small scale tests
 - > Masonry tests
 - > Cyclic shear tests
 - > Full scale building tests on reaction wall
 - > Shaking table tests
- Summary

wienerberger

Market trends

Main European wide market trends Urbanization

- Trend for urbanization continues
- Increasing housing starts for multifamily houses
- Stagnating housing starts for single familiy houses

Main European wide market trends Lack of skilled labor

- standardized building systems to speed up and automate elements of design and construction.
- investment in automation of on-site and back-office processes.
- Increase in off-site construction = building in controlled environments
- Robotics, large format blocks, lifting aids, etc.

Main European wide market trends Sustainability (CO2 emissions, circularity, ...)

- Climate change
- Significant reduction of ecological footprint, especially CO2 emissions
- Trend to recycled and sustainbale materials
- Circular Economy
- Focus on reuse and renovation/retrofitting

Main European wide market trends Digitalization

wienerberger

Planners:

- Further focus on digital project design and planning
- Digital collaboration tools such as building-information modeling (BIM)
- 4D and 5D simulation to replan projects and reoptimize schedules Contractors:
- digital ordering and invoicing, etc.

wienerberger

Wienberger product- and system development

Wienerberger innovation strategy Innovation fields

Simulation of masonry strength Simulation of crack formation

Materials & Products

wienerberger

> Simulation of crack formation to cover exact failure mechanisms

Simulation of masonry strength Optimization of masonry strength

wienerberger

Optimization of block design

> Significant Increase of masonry strength

Simulation of masonry strength Optimization of fire resistance

Simulation of fire test

> Non-linear heat flow and temperature dependent material properties considered

Materials & Products

wienerberger

Temperature distribution t = 30 min, temperature front due to radiation faster in cavities

Temperature distribution t = 180 min – almost uniform temperature distribution

Our Vision

Masonry robotics

wienerberger

Mobile masonry robot

Cooperation with Fast Brick Robotics

wienerberger

Wienerberger commitment to sustainability

3 column strategy

1. Save energy, reduce emissions

Wienerberger reduced the use of thermal energy by 20% in the last 5 years and is constantly working on reducing CO² emissions

2. Use renewable energy

Local plants use renewable energy and produces with Bio-electricity

3. Invest in climate protection projects

AmQuake Software

wienerberger

AmQuake is a calculation software used for the structural design of masonry buildings:

- > safe to seismic action;
- > designed according to the most recent
 European and national design codes EC6
 & EC8
- > designed using the most modern methods of seismic calculation

AmQuake is based on the PUSH-OVER analysis of the structure and on the Frame by Macro Elements – FME Modelling Method.

3D design module for FEM calculations

Development of engineering design software with Dlubal

- > Development of stable masonry module for RFEM
- > Robust calculation for engineering practice
- > Feasible calculation time
- > Full integration in BIM planning process

wienerberger

structure structure structure

Full Model

Digital End2End

Process

BIM Model

Structural Models

Structural Analysis

Update of the standard

18

Partial Model

Wienerberger provides full system solutions

wienerberger

Evaluation of new masonry types towards seismic performance

Evaluation of seismic performance Materials and products

wienerberger

Porotherm IZO Profi

Porotherm Dryfix extra masonry glue

Evaluation of seismic performance Overview on test program at ZAG Lubljana

wienerberger

Shear strength acc. EN 1052-3

Abbildung 5-26: Scherversuche nach EN 1052-3 [203]

Cyclic shear tests on walls

Figure 29: View of the test setup for cyclic shear tests.

Reaction wall tests

Figure 32: Multistorey model in the test setup.

Shaking table tests (LNEC Lisbon)

Cyclic shear tests Cyclic shear tests

wienerberger

Test setup

Figure 29: View of the test setup for cyclic shear tests.

Cyclic loading

Figure 31: Program of horizontal loading for wall W8.

Cyclic shear tests Test results

Test results serve as input for push-over calculations:

- > Load displacement curveLast- Verschiebungs-Kurve
- > Maximum shear resistance
- > Maximum drift capacity

Cyclic shear tests Results unreinforced masonry

Cyclic shear tests Effect of confinement

wienerberger

Confined masonry (blue) shows higher ductility than unreinforced masonry (red)

Full scale tests on 3 story building Type of construction

- > Part of typical five storey residential structure
- > Dimensions 6 x 4 meters in plan and about 7 m high
- > Tie columns placed according EC8 rules

Full scale tests on 3 story building Test setup and loading

Full scale tests on 3 story building Test setup and loading

wienerberger

image-cam-1-0667

Full scale tests on 3 story building Test results – cyclic behavior

> Envelope of hysteretic curves

- > Corresponding limit states
- > Max. loads and drift limits

	Damage LS 🛛 🔵		Max Resist LS 🛛 🔵		Near Col. LS 🛛 🔴	
Floor	<i>H_{cr}</i> [kN]	Φ _{cr} [%]	H _{max} [kN]	Ф _{Нтах} [%]	H_u [kN]	Φ _u [%]
3	307	0.07	-	-	-	-
2	401	0.07	833	0.50	-	-
1*	482	0.08	1000	0.66	797	1.75

* limit state of the (model) building

Full scale tests on 3 story building Test results – evaluation of q- values

> Bilinearization of envelope

Numerical results of bilinear idealization and **q factor** values

Floor	<i>k</i> [kN/%]	F _{id} [kN]	Φ _{el} [%]	Φ _{ult} [%]	$\mu = u_{ult}/u_{el}$	q []
1. +	4151	891	0.21	1.75	8.15	3.9
1	4068	930	0.23	1.75	7.66	3.8
avg.	4110	911	0.22	1.75	7.91	3.9

Full scale tests on 3 story building Test results – comparison with wall tests

wienerberger

> Strong similarity between failure in wall tests and building model:

Failure of the pier in the building model

Failure of the wall

Full scale tests on 3 story building Conclusions

wienerberger

Summary of results

- > Mode of response was storey mechanism
- > Shear damage of walls in first floor
- > High ductility of confined IZO Profi masonry

Conculsions from test institute:

- > "Tests and analysis of the results show that buildings built in the above described technology respond adequately to seismic loads"
- > "... the tests showed that the ductility and energy dissipation were not severely affected by the level of compressive stress ..."
- > The behaviour factor q was assessed based on the measured and observed response of the structure and amounted to q = 3.9. This indicates that in the design the highest value from the interval of recommended values in the Eurocode 8, i.e. q = 3.0, can be used.

Shaking table tests

Shaking table tests

wienerberger

Test at acceleration of 0,30 g

Shaking table tests Evaluation via numerical analysis

> Nummerical simulations using software **AmQuake**

Equivalent frame model:

> Big safety margin between experiment and non-linear calculation

New generation of masonry solutions

wienerberger

Wienerberger is a trustworthy business partner for the building industry

- > We develop our products with sophisticated methods
- > We test our solutions in cooperation with local experts
- > Our ambition is to develop the "New generation of masonry solutions"

Dr. Andreas Jäger, Wienerberger AG, Wienerbergerplatz 1, 1100 Vienna, Austria

wienerberger

Hvala Vam na pažnji!

Thank you for your attention!

